Acta Cryst. (1961). 14, 1304

On the crystal structure of tetragonal (red) PbO. By Janusz Leciejewicz, Institute for Nuclear Research, Warszawa, Poland
(Received 3 July 1961)

The crystal structure of tetragonal modification of lead monoxide has been studied by several workers. Dickinson & Friauf (1924) have found the tetragonal unit cell to contain two Pb atoms at $\frac{1}{4}$, $\frac{1}{4}$, z and $\frac{3}{4}$, $\frac{3}{4}$, \bar{z} , and two oxygen atoms at $\frac{3}{4}$, $\frac{1}{4}$, 0 and $\frac{1}{4}$, $\frac{3}{4}$, 0, the space group $D_{4h}^{7}-P_{4/nmm}$ being assigned as the most probable. An interesting coordination arrangement was discovered: each Pb atom was bound to four oxygen atoms forming a square pyramid with a lead atom at the apex. Each oxygen atom was surrounded tetrahedrally by four lead atoms. The Pb-O distance was found to be 2.30 Å. Subsequently Levi & Natta (1926) placed the O atoms in $\frac{1}{4}$, $\frac{1}{4}$, v, and $\frac{3}{4}$, $\frac{3}{4}$, \overline{v} sites with v=0.76, Pb atoms occupying $\frac{1}{4}$, $\frac{1}{4}$, z and $\frac{3}{4}$, $\frac{3}{4}$, \overline{z} sites with z=0.26. This arrangement was a distorted NaCl structure with every lead atom surrounded by six oxygens at distances 2.5-2.8 Å. Dickinson & Friauf's (1924) conclusions were supported later by Moore & Pauling (1941) using powder data and by Bystrøm (1945) using a single-crystal. The results of the X-ray investigations are summarized in Table 1.

Table 1. Summary of X-ray results for red PbO

$z_{ m Pb}$	a (Å)	c (Å)	References
$0.24 \\ 0.26$	3·99 3·96	$5.01 \\ 5.02$	Dickinson & Friauf (1924) Levi & Natta (1926)
0.233	3.947	4.988	Moore & Pauling (1941)
0.2385	3.964	5.008	Bystrøm (1945)

Space group: $D_{4h}^7 - P4/nmm$

Only Levi & Natta placed O in 2(c): $\frac{1}{4}$, $\frac{1}{4}$, v; $\frac{3}{4}$, $\frac{3}{4}$, \overline{v} . v=0.76.

However, there is another possibility of placing the oxygen atoms in space group P4/nmm: i.e. in (2b) at $\frac{3}{4}$, $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{2}$. For these positions the form of the coordination pyramid would be retained, the Pb–O distances being enlarged by approximately 3%. The intensity of some reflections would be altered, but these changes could not be detected using X-rays. Neutron-diffraction provides much better possibilities for the determination of oxygen atoms positions since the neutron scattering amplitudes for lead and oxygen are, in units of 10^{-12} cm., $b_{Pb} = 0.960 \pm 0.005$ and $b_{O} = 0.58 \pm 0.02$ (Hughes & Schwartz, 1958).

Red lead monoxide X-ray and chemically controlled was used. The lattice constants were determined as:

$$a = 3.96 \pm 0.01$$
, $c = 5.01 \pm 0.01$ Å, $c/a = 1.27$.

Powder neutron measurements up to $2\theta = 50^{\circ}$ were made using 1.36 Å neutrons reflected from an Al monochromator. The neutron source was the Swierk reactor EWA operating at 2 mW. power. Second-order radiation contamination was found to be about 5%. Integrated intensities were obtained by measuring areas under peaks on the neutron diffraction pattern. Observed jF^2

values were derived after correction for Lorentz and scale factors, the influence of temperature factor being neglected. A comparison between observed jF^2 values and those calculated for alternative oxygen positions is given in Table 2.

Table 2. Neutron diffraction data for tetragonal (red)
PbO

hkl	$jF^2{}_o$	jF^2c^*	$jF^2_c\dagger$	jF^2c ‡
001	$3 \cdot 2$	3.47	2.01	0.00
101	29	$29 \cdot 30$	29.30	4.60
110	$2 \cdot 6$	2.30	$2 \cdot 30$	37.94
002	0.8	1.08	1.08	18.90
111	8	8.08	13.87	0.00
102	1.0	0.78	0.78	1.18
200	42	40.45	40.45	37.94
$112 \\ 201$	73	$88.53 \begin{cases} 74.66 \\ 13.87 \end{cases}$	$82.72 \begin{cases} 74.66 \\ 8.06 \end{cases}$	$74.71 \begin{cases} 74.71 \\ 0.00 \end{cases}$
$003 \\ 121 $	59	59.57 $\begin{cases} 0.96 \\ 58.61 \end{cases}$	$63.90 \begin{cases} 5.29 \\ 58.61 \end{cases}$	$9.24 \begin{cases} 0.04 \\ 9.20 \end{cases}$

- * O atoms placed in (2a): $\frac{3}{4}$, $\frac{1}{4}$, 0; $\frac{1}{4}$, $\frac{3}{4}$, 0. $z_{Pb} = 0.237 \pm 0.002$.
- † O atoms placed in (2h): $\frac{3}{4}$, $\frac{1}{4}$, $\frac{1}{2}$; $\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{2}$. $z_{Pb} = 0.237 \pm 0.002$.
- ‡ O atoms placed in (2c): $\frac{1}{4}$, $\frac{1}{4}$, v; $\frac{3}{4}$, $\frac{3}{4}$, \overline{v} ; with v = 0.76. $z_{Pb} = 0.26$.

The discrepancy factor is 0.092 for atomic sites, as proposed by Dickinson & Friauf (1924) and 0.11 for O placed in 2(b). For the former structure a systematic variation of the lead-atom parameter $z_{\rm Pb}$ gives the best agreement between observed and calculated intensities for $z_{\rm Pb}=0.237\pm0.002$. From the last column of Table 2 it becomes apparent, that the neutron diffraction data disagree with jF^2 values calculated for Levi & Natta's structure. A better agreement between jF^2 values, in particular for well resolved peaks, as compared to the structure model with O atoms in 2(b) shows, that the structure of tetragonal PbO as proposed by Dickinson & Friauf (1924) is supported also by a neutron diffraction study.

The technical assistance of Miss Barbara Rutkowska is gratefully acknowledged.

References

Bystrøm, A. (1945). Ark. Kemi Min. Geol. A, 20, No. 11, 1-31.

DICKINSON, R. G. & FRIAUF, I. B. (1924). J. Amer. Chem. Soc. 46, 2457.

HUGHES, D. J. & SCHWARTZ, R. B. (1958). Neutron Cross Sections, 2nd Ed. Upton, New York: Brookhaven National Laboratory.

LEVI, G. R. & NATTA, E. G. (1926). Nuovo Cim. 3, 114.
MOORE, W. J. & PAULING, L. (1941). J. Amer. Chem. Soc. 63, 1392.